Three-dimensional architecture of collecting ducts, loops of Henle, and blood vessels in the renal papilla.

نویسندگان

  • Thomas L Pannabecker
  • William H Dantzler
چکیده

Three-dimensional architecture of vasculature and nephrons in rat renal papilla was assessed by digital reconstruction. Descending vasa recta (DVR), ascending vasa recta (AVR), descending thin limbs (DTLs), ascending thin limbs (ATLs), and collecting ducts (CDs) were identified with antibodies against segment-specific proteins. DTLs are distributed nonuniformly in transverse sections of papilla, but lateral compartmentation between DTLs and CD clusters that occurs in outer IM makes no contribution to concentrating mechanism in papilla. ATLs are distributed nearly uniformly throughout IM. Vasa recta within approximately 2 mm of the papilla tip are primarily fenestrated vessels; therefore, AVR and DVR can only be determined by blood flow direction. CDs within approximately 500 microm of the papilla tip have nearly 100% greater circumference than CDs within first 1-2 mm below the IM base. Return of water to general circulation from deep papillary CDs appears to be facilitated by a 150% increase in the number of AVR closely abutting these CDs. Consequently, average fractional CD surface area abutting AVR is 0.61, about the same as that (0.54) for smaller CDs that lie near the IM base. Interstitial nodal compartments, bounded by CDs, ATLs, and AVR, surround CDs along the axis of the IM. Fewer ATLs exist in the final 1 mm, as there are fewer loops and the number of these nodal arrangements is therefore reduced. However, tips of many of those loops reaching this area have bends with 50-100% greater transverse lengths than bends of loops near the IM base. This may be significant for solute movement out of loop bends.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of three-dimensional architecture in the urine concentrating mechanism of the rat renal inner medulla.

Recent studies of three-dimensional architecture of rat renal inner medulla (IM) and expression of membrane proteins associated with fluid and solute transport in nephrons and vasculature have revealed structural and transport properties that likely impact the IM urine concentrating mechanism. These studies have shown that 1) IM descending thin limbs (DTLs) have at least two or three functional...

متن کامل

Effects of diuretic states on collecting duct fluid flow resistance in the hamster kidney.

Hydrostatic pressures were measured in cortical tubules, long loops of Henle, terminal collecting ducts, and in vasa recta in hamsters. In hydropenia, the loops of Henle and terminal collecting ducts provided the major fluid flow resistances, as judged by the location of hydrostatic pressure drops. In mannitol or saline diuresis, hydrostatic pressures in all tubular segments increased, but pres...

متن کامل

Two modes for concentrating urine in rat inner medulla.

We used a mathematical model of the urine concentrating mechanism of rat inner medulla (IM) to investigate the implications of experimental studies in which immunohistochemical methods were combined with three-dimensional computerized reconstruction of renal tubules. The mathematical model represents a distribution of loops of Henle with loop bends at all levels of the IM, and the vasculature i...

متن کامل

Electrophysiological Study of Renal Papilla of Golden Hamsters.

WINDHAGER, ERICH E. Electrophysiological study of renal papilla of golden hamsters. Am. J. Physiol. 206(4) : 694-700. 1g64.Electrical potential differences across the tubular epithelium of loops of Henle and of collecting ducts were measured by microelectrode techniques. In a separate series of experiments concentrations of Na22 and of chloride were estimated in fluid collected from Henle’s loo...

متن کامل

CALL FOR PAPERS Renal Hypoxia Impact of renal medullary three-dimensional architecture on oxygen transport

Fry BC, Edwards A, Sgouralis I, Layton AT. Impact of renal medullary three-dimensional architecture on oxygen transport. Am J Physiol Renal Physiol 307: F263–F272, 2014. First published June 4, 2014; doi:10.1152/ajprenal.00149.2014.—We have developed a highly detailed mathematical model of solute transport in the renal medulla of the rat kidney to study the impact of the structured organization...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 293 3  شماره 

صفحات  -

تاریخ انتشار 2007